Skip to main content

Carmichael lambda

· One min read

Carmichael lambda is the smallest positive integer mm such that

am=1(modn)a^m = 1(mod n) \forall a coprime to n.

Definition

For a number: n=p1r1.p2r2....pkrkn = {p_1}^{r_1}.{p_2}^{r_2}....{p_k}^{r_k} Carmichael lambda function is defined as λ(n)=lcm(λ(p1r1),λ(p2r2),....λ(pkrk))\lambda(n) = lcm(\lambda({p_1}^{r_1}), \lambda({p_2}^{r_2}),....\lambda({p_k}^{r_k})) where λ(pr)\lambda(p^r) is defined as:

λ(pr)={12ϕ(pr) if p=2 and r3ϕ(pr)otherwise\lambda(p^r) = \begin{cases} \frac{1}{2} \phi(p^r) & \text{ if } p = 2 \text{ and } r \geq 3 \\ \phi(p^r) & \text{otherwise} \end{cases}

where ϕ\phi is Euler's totient function.and it is given by

ϕ(pr)=pr1.(p1){\phi(p^r) = p^{r-1}.(p-1)}