मुख्य कंटेंट तक स्किप करें

No way home Back

Quantum Computers are going to break some of the standard cryptosystems like RSA, ECC and others. We're in some trouble, so why don't we make our own Quantum-Safe Key Exchange Protocol?

nowayback.py
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad, unpad
from hashlib import sha256
from Crypto.Util.number import getPrime, GCD, bytes_to_long, long_to_bytes, inverse
from random import randint

FLAG = b'crypto{????????????????????????????????}'

p, q = getPrime(512), getPrime(512)
n = p * q

# Alice side
v = (p * randint(1, n)) % n
k_A = randint(1, n)
while GCD(k_A, n) != 1:
k_A = randint(1, n)
vka = (v * k_A) % n

# Bob side
k_B = randint(1, n)
while GCD(k_B, n) != 1:
k_B = randint(1, n)
vkakb = (vka * k_B) % n

# Alice side
vkb = (vkakb * inverse(k_A, n)) % n

# Bob side
v_s = (vkb * inverse(k_B, n)) % n

# Alice side
key = sha256(long_to_bytes(v)).digest()
cipher = AES.new(key, AES.MODE_ECB)
m = pad(FLAG, 16)
c = cipher.encrypt(m).hex()

out = ""
out += f"p, q = ({p}, {q}) \n"
out += f"vka = {vka} \n"
out += f"vkakb = {vkakb} \n"
out += f"vkb = {vkb} \n"
out += f"c = '{c}' \n"
with open("out.txt", "w") as f:
f.write(out)
out.txt
p, q = (10699940648196411028170713430726559470427113689721202803392638457920771439452897032229838317321639599506283870585924807089941510579727013041135771337631951, 11956676387836512151480744979869173960415735990945471431153245263360714040288733895951317727355037104240049869019766679351362643879028085294045007143623763) 
vka = 124641741967121300068241280971408306625050636261192655845274494695382484894973990899018981438824398885984003880665335336872849819983045790478166909381968949910717906136475842568208640203811766079825364974168541198988879036997489130022151352858776555178444457677074095521488219905950926757695656018450299948207
vkakb = 114778245184091677576134046724609868204771151111446457870524843414356897479473739627212552495413311985409829523700919603502616667323311977056345059189257932050632105761365449853358722065048852091755612586569454771946427631498462394616623706064561443106503673008210435922340001958432623802886222040403262923652
vkb = 6568897840127713147382345832798645667110237168011335640630440006583923102503659273104899584827637961921428677335180620421654712000512310008036693022785945317428066257236409339677041133038317088022368203160674699948914222030034711433252914821805540365972835274052062305301998463475108156010447054013166491083
c = 'fef29e5ff72f28160027959474fc462e2a9e0b2d84b1508f7bd0e270bc98fac942e1402aa12db6e6a36fb380e7b53323'

Solution

This WriteUp Solution is password protected by the flag of the challenge.

Our first goal will be to find the v using which we can decrypt the flag Given:

n=p.qv=r.p(modn)vka=v.kA(modn)vkb=v.kB(modn)vkakb=vka.kB(modn)=vkb.kA(modn)\begin{aligned} n = p.q \\ v = r.p (mod \hspace{2px} n) \\ vka = v.k_A (mod \hspace{2px} n) \\ vkb = v.k_B (mod \hspace{2px} n) \\ vkakb = vka.k_B (mod \hspace{2px} n) = vkb.k_A (mod \hspace{2px} n) \\ \end{aligned}

We need to calculate vka1vka^{-1} to calaculate KBK_B But it's not possible since v in multiple of p.So we can divide everything by p so that we can find inverse.

KB=vkakbp.(vkap)1(modq)v=vkakb.kB1(modn)\begin{aligned} K_B = \frac{vkakb}{p}.({\frac{vka}{p}})^{-1} (mod \hspace{2px} q) \\ \hspace{2px} \\ v = vkakb.k_B^{-1} (mod \hspace{2px} n) \\ \end{aligned}
sol.py
from Cryptodome.Cipher import AES
from Cryptodome.Util.Padding import unpad
from hashlib import sha256
from Cryptodome.Util.number import long_to_bytes

p, q = (10699940648196411028170713430726559470427113689721202803392638457920771439452897032229838317321639599506283870585924807089941510579727013041135771337631951, 11956676387836512151480744979869173960415735990945471431153245263360714040288733895951317727355037104240049869019766679351362643879028085294045007143623763)
vka = 124641741967121300068241280971408306625050636261192655845274494695382484894973990899018981438824398885984003880665335336872849819983045790478166909381968949910717906136475842568208640203811766079825364974168541198988879036997489130022151352858776555178444457677074095521488219905950926757695656018450299948207
vkakb = 114778245184091677576134046724609868204771151111446457870524843414356897479473739627212552495413311985409829523700919603502616667323311977056345059189257932050632105761365449853358722065048852091755612586569454771946427631498462394616623706064561443106503673008210435922340001958432623802886222040403262923652
vkb = 6568897840127713147382345832798645667110237168011335640630440006583923102503659273104899584827637961921428677335180620421654712000512310008036693022785945317428066257236409339677041133038317088022368203160674699948914222030034711433252914821805540365972835274052062305301998463475108156010447054013166491083
c = 'fef29e5ff72f28160027959474fc462e2a9e0b2d84b1508f7bd0e270bc98fac942e1402aa12db6e6a36fb380e7b53323'

n = p * q
rka = vka // p
rkakb = vkakb // p
k_B = (rkakb * pow(rka, -1, q)) % q
v = (vkb * pow(k_B, -1, n)) % n

key = sha256(long_to_bytes(v)).digest()
cipher = AES.new(key, AES.MODE_ECB)
flag = cipher.decrypt((bytes.fromhex(c)))
print(unpad(flag,16).decode())

After running the script, we get the flag crypto{1nv3rt1bl3_k3y_3xch4ng3_pr0t0c0l}