मुख्य कंटेंट तक स्किप करें

Lost Key

Mustard Brightpants is an archaeologist who has been excavating ruins in Egypt for the past 25 years. In one of his discoveries, he found a sphere-shaped trinket that has a strange combination of letters and numbers printed around it. Alongside it was a scroll containing a riddle in a strange language, and a keypad. The sphere's contents might finally solve the mystery behind the downfall of the mythical city of Outlandis. Could you help Mr. Brightpants solve the riddle and find the correct key to unlock the sphere?

encrypt.py
#!/usr/bin/env python3
from Crypto.Util.number import *
from hashlib import sha1
from Crypto.Cipher import AES
from Crypto.Util.Padding import pad
from secret import flag, n

class coord:
def __init__(self, x, y):
self.x = x
self.y = y
def __str__(self):
return f"coord({self.x}, {self.y})"

class EC:
def __init__(self, p):
self.p = p
self.zero = coord(0,0)

def add(self, P,Q):
if P == self.zero:
return Q
if Q == self.zero:
return P
if P.x == Q.x and P.y == -Q.y:
return self.zero
if P != Q:
Lambda = (Q.y - P.y) * inverse(Q.x - P.x, self.p)
else:
Lambda = (3*(P.x*Q.x) + 417826948860567519876089769167830531934*P.x + 177776968102066079765540960971192211603) * inverse(P.y+Q.y+3045783791, self.p)
Lambda %= self.p
R = coord(0,0)
R.x = (Lambda**2-P.x-Q.x-208913474430283759938044884583915265967) % self.p
R.y = (Lambda*(P.x-R.x) - P.y - 3045783791) % self.p
return R

def mul(self, P, n):
Q = P
R = self.zero
while n > 0:
if n % 2 == 1:
R = self.add(R,Q)
n >>= 1
Q = self.add(Q,Q)
return R

def encrypt(key):
iv = __import__('os').urandom(16)
key = sha1(str(key).encode('ascii')).digest()[0:16]
cipher = AES.new(key, AES.MODE_CBC, iv)
ct = cipher.encrypt(pad(flag,16))
return(ct.hex(),iv.hex())

assert(n < 38685626227668133590597631)
e = EC(101177610013690114367644862496650410682060315507552683976670417670408764432851)
G = coord(14374457579818477622328740718059855487576640954098578940171165283141210916477, 97329024367170116249091206808639646539802948165666798870051500045258465236698)

print ("G =",G)
print ("Gn =", e.mul(G,n).x)
enc = encrypt(n)
print ("Ciphertext: {}\nIV: {}".format(enc[0],enc[1]))
output.txt
G = coord(14374457579818477622328740718059855487576640954098578940171165283141210916477, 97329024367170116249091206808639646539802948165666798870051500045258465236698)
Gn = 32293793010624418281951109498609822259728115103695057808533313831446479788050
Ciphertext: df572f57ac514eeee9075bc0ff4d946a80cb16a6e8cd3e1bb686fabe543698dd8f62184060aecff758b29d92ed0e5a315579b47f6963260d5d52b7ba00ac47fd
IV: baf9137b5bb8fa896ca84ce1a98b34e5

Solution

This WriteUp Solution is password protected by the flag of the challenge.